HOMEWORK \#4 SOLUTIONS

Problem \#1: RDK 18.24

Solve: (a) The mean free path is

$$
\lambda=\frac{1}{4 \sqrt{2} \pi(N / V) r^{2}}
$$

where $r \approx 0.5 \times 10^{-10} \mathrm{~m}$ is the atomic radius for helium and N / V is the gas number density. From the ideal-gas law,

$$
\begin{aligned}
& \frac{N}{V}=\frac{p}{k T}=\frac{0.10 \mathrm{~atm} \times 101,300 \mathrm{~Pa} / \mathrm{atm}}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(10 \mathrm{~K})}=7.34 \times 10^{25} \mathrm{~m}^{-3} \\
& \Rightarrow \lambda=\frac{1}{4 \sqrt{2} \pi\left(7.34 \times 10^{25} \mathrm{~m}^{-3}\right)\left(0.5 \times 10^{-10} \mathrm{~m}\right)^{2}}=3.1 \times 10^{-7} \mathrm{~m}=310 \mathrm{~nm}
\end{aligned}
$$

(b) The root-mean-square speed is

$$
v_{\mathrm{rms}}=\sqrt{\frac{3 \mathrm{k}_{\mathrm{B}} T}{m}}=\sqrt{\frac{3\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(10 \mathrm{~K})}{4 \times\left(1.661 \times 10^{-27} \mathrm{~kg}\right)}}=250 \mathrm{~m} / \mathrm{s}
$$

where we used $A=4 \mathrm{u}$ as the atomic mass of helium.
(c) The average energy per atom is $e_{\mathrm{avg}}=\frac{3}{2} k_{\mathrm{B}} T=\frac{3}{2}\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(10 \mathrm{~K})=2.1 \times 10^{-22} \mathrm{~J}$.

Problem \#2: RDK 18.32

Solve: The conservation of energy equation $\left(\Delta E_{\mathrm{th}}\right)_{\text {gas }}+\left(\Delta E_{\mathrm{th}}\right)_{\text {solid }}=0 \mathrm{~J}$ is

$$
\begin{gathered}
n_{\mathrm{gas}}\left(C_{\mathrm{V}}\right)_{\mathrm{gas}}\left(T_{\mathrm{f}}-T\right)_{\mathrm{gas}}+n_{\text {solid }}\left(C_{\mathrm{V}}\right)_{\text {solid }}\left(T_{\mathrm{f}}-T_{\mathrm{i}}\right)_{\text {solid }}=0 \mathrm{~J} \\
\Rightarrow(1.0 \mathrm{~mol})(12.5 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(-50 \mathrm{~K})+(1.0 \mathrm{~mol})(25.0 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(\Delta T)_{\text {solid }}=0 \Rightarrow(\Delta T)_{\text {solid }}=25^{\circ} \mathrm{C}
\end{gathered}
$$

The temperature of the solid increases by $25^{\circ} \mathrm{C}$.

Problem \#3: RDK 18.34

Visualize: At low temperatures, $C_{\mathrm{v}}=\frac{3}{2} R=12.5 \mathrm{~J} / \mathrm{mol} \mathrm{K}$. At room temperature and modestly hot temperatures, $C_{\mathrm{v}}=\frac{5}{2} R=20.8 \mathrm{~J} / \mathrm{mol} \mathrm{K}$. At very hot temperatures, $C_{\mathrm{v}}=\frac{7}{2} R=29.1 \mathrm{~J} / \mathrm{mol} \mathrm{K}$.
Solve: (a) The number of moles of diatomic hydrogen gas in the rigid container is

$$
\frac{0.20 \mathrm{~g}}{2 \mathrm{~g} / \mathrm{mol}}=0.10 \mathrm{~mol}
$$

The heat needed to change the temperature of the gas from 50 K to 100 K at constant volume is

$$
Q=\Delta E_{\mathrm{th}}=n C_{\mathrm{v}} \Delta T=(0.10 \mathrm{~mol})(12.5 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(100 \mathrm{~K}-50 \mathrm{~K})=62 \mathrm{~J}
$$

(b) To raise the temperature from 250 K to 300 K ,

$$
Q=\Delta E_{\mathrm{th}}=(0.10 \mathrm{~mol})(20.8 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(300 \mathrm{~K}-250 \mathrm{~K})=100 \mathrm{~J}
$$

(c) To raise the temperature from 2250 K to $2300 \mathrm{~K}, Q=\Delta E_{\mathrm{th}}=n C_{\mathrm{v}} \Delta T=(0.10 \mathrm{~mol})(29.1 \mathrm{~J} / \mathrm{mol} \mathrm{K})(50 \mathrm{~K})=150 \mathrm{~J}$

Problem \#4: RDK 18.48

Solve: (a) The number of molecules of helium is

$$
\begin{aligned}
N_{\text {helium }} & =\frac{p V}{k_{\mathrm{B}} T}=\frac{\left(2.0 \times 1.013 \times 10^{5} \mathrm{~Pa}\right)\left(100 \times 10^{-6} \mathrm{~m}^{3}\right)}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(373 \mathrm{~K})}=3.936 \times 10^{21} \\
& \Rightarrow n_{\text {helium }}=\frac{3.936 \times 10^{21}}{6.022 \times 10^{23} \mathrm{~mol}^{-1}}=6.536 \times 10^{-3} \mathrm{~mol}
\end{aligned}
$$

The initial internal energy of helium is

$$
E_{\text {helium i }}=\frac{3}{2} N_{\text {helium }} k_{\mathrm{B}} T=30.4 \mathrm{~J} \approx 30 \mathrm{~J}
$$

The number of molecules of argon is

$$
\begin{aligned}
N_{\text {argon }} & =\frac{p V}{k_{\mathrm{B}} T}=\frac{\left(4.0 \times 1.013 \times 10^{5} \mathrm{~Pa}\right)\left(200 \times 10^{-6} \mathrm{~m}^{3}\right)}{\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(673 \mathrm{~K})}=8.726 \times 10^{21} \\
& \Rightarrow n_{\text {argon }}=\frac{8.726 \times 10^{21}}{6.022 \times 10^{23} \mathrm{~mol}^{-1}}=1.449 \times 10^{-2} \mathrm{~mol}
\end{aligned}
$$

The initial thermal energy of argon is

$$
E_{\text {argon i }}=\frac{3}{2} N_{\text {argon }} k_{\mathrm{B}} T=121.6 \mathrm{~J} \approx 122 \mathrm{~J}
$$

(b) The equilibrium condition for monatomic gases is

$$
\begin{gathered}
{\left(\Theta_{\text {helium } \mathrm{f}}\right)_{\text {avg }}=\left(e_{\text {argon } \mathrm{f}}\right)_{\text {avg }}=\left(e_{\text {total }}\right)_{\text {avg }}}_{\Rightarrow} \begin{array}{c}
E_{\text {helium } \mathrm{f}} \\
n_{\text {helium }}
\end{array}=\frac{E_{\text {argon } \mathrm{f}}}{n_{\text {argon }}}=\frac{E_{\text {tot }}}{n_{\text {tot }}}=\frac{(30.4+121.6) \mathrm{J}}{\left(6.54 \times 10^{-3}+1.449 \times 10^{-2}\right) \mathrm{mol}}=7228 \mathrm{~J} / \mathrm{mol} \\
\Rightarrow E_{\text {helium } \mathrm{f}}=(7228 \mathrm{~J} / \mathrm{mol}) n_{\text {helium }}=(7228 \mathrm{~J} / \mathrm{mol})\left(6.54 \times 10^{-3} \mathrm{~mol}\right)=47.3 \mathrm{~J} \approx 47 \mathrm{~J} \\
E_{\text {argon } \mathrm{f}}=(7228 \mathrm{~J} / \mathrm{mol}) n_{\text {argon }}=(7228 \mathrm{~J} / \mathrm{mol})\left(1.449 \times 10^{-2} \mathrm{~mol}\right)=104.7 \mathrm{~J} \approx 105 \mathrm{~J}
\end{gathered}
$$

(c) The amount of heat transferred is

$$
E_{\text {helium f }}-E_{\text {helium i }}=47.3 \mathrm{~J}-30.4 \mathrm{~J}=16.9 \mathrm{~J} \quad E_{\text {argon f }}-E_{\operatorname{argon~i~}}=104.7 \mathrm{~J}-121.6 \mathrm{~J}=-16.9 \mathrm{~J}
$$

The helium gains 16.9 J of heat energy and the argon loses 16.9 J . Thus approximately 17 J are transferred from the argon to the helium.
(d) The equilibrium condition for monatomic gases is

$$
\left(\Theta_{\text {helium }}\right)_{\text {avg }}=\left(e_{\text {argon }}\right)_{\text {avg }} \Rightarrow \frac{E_{\text {helium } \mathrm{f}}}{N_{\text {helium }}}=\frac{E_{\text {argon } \mathrm{f}}}{N_{\text {argon }}}=\frac{3}{2} k_{\mathrm{B}} T_{\mathrm{f}}
$$

Substituting the above values,

$$
\frac{47.3 \mathrm{~J}}{3.936 \times 10^{21}}=\frac{104.7 \mathrm{~J}}{8.726 \times 10^{21}}=\frac{3}{2}\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right) T_{\mathrm{f}} \Rightarrow T_{F}=580 \mathrm{~K}=307^{\circ} \mathrm{C}
$$

(e) The final pressure of the helium and argon are

$$
\begin{gathered}
p_{\text {helium f }}=\frac{N_{\text {helium }} k_{\mathrm{B}} T}{V_{\text {helium }}}=\frac{\left(3.936 \times 10^{21}\right)\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(580 \mathrm{~K})}{100 \times 10^{-6} \mathrm{~m}^{3}}=3.15 \times 10^{5} \mathrm{~Pa} \approx 3.1 \mathrm{~atm} \\
p_{\text {argon } \mathrm{f}}=\frac{N_{\text {argon }} k_{\mathrm{B}} T}{V_{\text {argon }}}=\frac{\left(8.726 \times 10^{21}\right)\left(1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}\right)(580 \mathrm{~K})}{200 \times 10^{-6} \mathrm{~m}^{3}}=3.49 \times 10^{5} \mathrm{~Pa} \approx 3.4 \mathrm{~atm}
\end{gathered}
$$

Problem \#5: RDK 19.2

Solve: During each cycle, the work done by the engine is $W_{\text {out }}=200 \mathrm{~J}$ and the engine exhausts $Q_{\mathrm{C}}=400 \mathrm{~J}$ of heat energy. By conservation of energy,

$$
Q_{\mathrm{H}}=W_{\mathrm{out}}+Q_{\mathrm{C}}=200 \mathrm{~J}+400 \mathrm{~J}=600 \mathrm{~J}
$$

Thus, the efficiency of the engine is

$$
\eta=\frac{W_{\text {out }}}{Q_{\mathrm{H}}}=\frac{400 \mathrm{~J}}{600 \mathrm{~J}}=0.33
$$

Problem \#6: RDK 19.14

Model: The heat engine follows a closed cycle, starting and ending in the original state. The cycle consists of three individual processes.
Solve: (a) The work done by the heat engine per cycle is the area enclosed by the p-versus- V graph. We get

$$
W_{\text {out }}=\frac{1}{2}(200 \mathrm{kPa})\left(100 \times 10^{-6} \mathrm{~m}^{3}\right)=10 \mathrm{~J}
$$

The heat energy transferred into the engine is $Q_{\mathrm{H}}=30 \mathrm{~J}+84 \mathrm{~J}=114 \mathrm{~J}$. Because $W_{\text {out }}=Q_{\mathrm{H}}-Q_{\mathrm{C}}$, the heat energy exhausted is

$$
Q_{\mathrm{C}}=Q_{\mathrm{H}}-W_{\mathrm{out}}=114 \mathrm{~J}-10 \mathrm{~J}=104 \mathrm{~J} \approx 0.10 \mathrm{~kJ}
$$

(b) The thermal efficiency of the engine is

$$
\eta=\frac{W_{\text {out }}}{Q_{\mathrm{H}}}=\frac{10 \mathrm{~J}}{114 \mathrm{~J}}=0.088
$$

Assess: Practical engines have thermal efficiencies in the range $\eta \approx 0.1-0.4$.

Problem \#7: RDK 19.17

Model: The Brayton cycle involves two adiabatic processes and two isobaric processes. The adiabatic processes involve compression and expansion through the turbine.
Solve: The thermal efficiency for the Brayton cycle is $\eta_{\mathrm{B}}=1-r_{\mathrm{p}}^{(1-\gamma) / \gamma}$, where $\gamma=C_{\mathrm{P}} / C_{\mathrm{V}}$ and r_{p} is the pressure ratio. For a diatomic gas $\gamma=1.4$. For an adiabatic process,

$$
p_{1} V_{1}^{\gamma}=p_{2} V_{2}^{\gamma} \Rightarrow p_{2} / p_{1}=\left(V_{1} / V_{2}\right)^{\gamma}
$$

Because the volume is halved, $V_{2}=\frac{1}{2} V_{1}$ so

$$
r_{\mathrm{p}}=p_{2} / p_{1}=(2)^{\gamma}=2^{1.4}=2.639
$$

The efficiency is

$$
\eta_{\mathrm{B}}=1-(2.639)^{-0.4 / 1.4}=0.24
$$

Problem \#8: RDK 19.53

Model: The heat engine follows a closed cycle. For a diatomic gas, $C_{\mathrm{V}}=\frac{5}{2} R$ and $C_{\mathrm{P}}=\frac{7}{2} R$.
Visualize: Please refer to Figure P19.53.
Solve: (a) Since $T_{1}=293 \mathrm{~K}$, the number of moles of the gas is

$$
n=\frac{p_{1} V_{1}}{R T_{1}}=\frac{\left(0.5 \times 1.013 \times 10^{5} \mathrm{~Pa}\right)\left(10 \times 10^{-6} \mathrm{~m}^{3}\right)}{(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(293 \mathrm{~K})}=2.08 \times 10^{-4} \mathrm{~mol}
$$

At point $2, V_{2}=4 V_{1}$ and $p_{2}=3 p_{1}$. The temperature is calculated as follows:

$$
\frac{p_{1} V_{1}}{T_{1}}=\frac{p_{2} V_{2}}{T_{2}} \Rightarrow T_{2}=\frac{p_{2}}{p_{1}} \frac{V_{2}}{V_{1}} T_{1}=(3)(4)(293 \mathrm{~K})=3516 \mathrm{~K}
$$

At point $3, V_{3}=V_{2}=4 V_{1}$ and $p_{3}=p_{1}$. The temperature is calculated as before:

$$
T_{3}=\frac{p_{3}}{p_{1}} \frac{V_{3}}{V_{1}} T_{1}=(1)(4)(293 \mathrm{~K})=1172 \mathrm{~K}
$$

For process $1 \rightarrow 2$, the work done is the area under the p-versus- V curve. That is,

$$
\begin{aligned}
W_{\mathrm{s}} & =(0.5 \mathrm{~atm})\left(40 \mathrm{~cm}^{3}-10 \mathrm{~cm}^{3}\right)+\frac{1}{2}(1.5 \mathrm{~atm}-0.5 \mathrm{~atm})\left(40 \mathrm{~cm}^{3}-10 \mathrm{~cm}^{3}\right) \\
& =\left(30 \times 10^{-6} \mathrm{~m}^{3}\right)(1 \mathrm{~atm})\left(\frac{1.013 \times 10^{5} \mathrm{~Pa}}{1 \mathrm{~atm}}\right)=3.04 \mathrm{~J}
\end{aligned}
$$

The change in the thermal energy is

$$
\Delta E_{\mathrm{th}}=n C_{\mathrm{V}} \Delta T=\left(2.08 \times 10^{-4} \mathrm{~mol}\right) \frac{5}{2}(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(3516 \mathrm{~K}-293 \mathrm{~K})=13.93 \mathrm{~J}
$$

The heat is $Q=W_{\mathrm{s}}+\Delta E_{\mathrm{th}}=16.97 \mathrm{~J}$. For process $2 \rightarrow 3$, the work done is $W_{\mathrm{s}}=0 \mathrm{~J}$ and

$$
\begin{aligned}
Q & =\Delta E_{\mathrm{th}}=n C_{\mathrm{V}} \Delta T=n\left(\frac{5}{2} R\right)\left(T_{3}-T_{2}\right) \\
& =\left(2.08 \times 10^{-4} \mathrm{~mol}\right) \frac{5}{2}(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(1172 \mathrm{~K}-3516 \mathrm{~K})=-10.13 \mathrm{~J}
\end{aligned}
$$

For process $3 \rightarrow 1$,

$$
\begin{aligned}
W_{\mathrm{s}} & =(0.5 \mathrm{~atm})\left(10 \mathrm{~cm}^{3}-40 \mathrm{~cm}^{3}\right)=\left(0.5 \times 1.013 \times 10^{5} \mathrm{~Pa}\right)\left(-30 \times 10^{-6} \mathrm{~m}^{3}\right)=-1.52 \mathrm{~J} \\
\Delta E_{\mathrm{th}} & =n C_{\mathrm{V}} \Delta T=\left(2.08 \times 10^{-4} \mathrm{~mol}\right) \frac{5}{2}(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(293 \mathrm{~K}-1172 \mathrm{~K})=-3.80 \mathrm{~J}
\end{aligned}
$$

The heat is $Q=\Delta E_{\mathrm{th}}+W_{\mathrm{s}}=-5.32 \mathrm{~J}$.

	$W_{\mathrm{s}}(\mathrm{J})$	$Q(\mathrm{~J})$	$\Delta E_{\text {th }}$
$1 \rightarrow 2$	3.04	16.97	13.93
$2 \rightarrow 3$	0	-10.13	-10.13
$3 \rightarrow 1$	-1.52	-5.32	-3.80
Net	1.52	1.52	0

(b) The efficiency of the engine is

$$
\eta=\frac{W_{\text {net }}}{Q_{\mathrm{H}}}=\frac{1.52 \mathrm{~J}}{16.97 \mathrm{~J}}=0.090=9.0 \%
$$

(c) The power output of the engine is

$$
500\left(\frac{\text { revolutions }}{\min }\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)\left(\frac{W_{\text {net }}}{\text { revolution }}\right)=\left(\frac{500}{60}\right)(1.52 \mathrm{~J} / \mathrm{s})=13 \mathrm{~W}
$$

Assess: Note that more than two significant figures are retained in part (a) because the results are intermediate. For a closed cycle, as expected, $\left(W_{\mathrm{s}}\right)_{\text {net }}=Q_{\text {net }}$ and $\left(\Delta E_{\mathrm{th}}\right)_{\text {net }}=0 \mathrm{~J}$.

Problem \#9: RDK 19.63 (BONUS)

Model: The closed cycle of the heat engine involves the following four processes: isothermal expansion, isochoric cooling, isothermal compression, and isochoric heating. For a monatomic gas $C_{\mathrm{V}}=\frac{3}{2} R$.

Visualize:

Solve: Using the ideal-gas law,

$$
p_{1}=\frac{n R T_{1}}{V_{1}}=\frac{(0.20 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(600 \mathrm{~K})}{2.0 \times 10^{-3} \mathrm{~m}^{3}}=4.986 \times 10^{5} \mathrm{~Pa}
$$

At point 2, because of the isothermal conditions, $T_{2}=T_{1}=600 \mathrm{~K}$ and

$$
p_{2}=p_{1} \frac{V_{1}}{V_{2}}=\left(4.986 \times 10^{5} \mathrm{~Pa}\right)\left(\frac{2.0 \times 10^{-3} \mathrm{~m}^{3}}{4.0 \times 10^{-3} \mathrm{~m}^{3}}\right)=2.493 \times 10^{5} \mathrm{~Pa}
$$

At point 3, because it is an isochoric process, $V_{3}=V_{2}=4000 \mathrm{~cm}^{3}$ and

$$
p_{3}=p_{2} \frac{T_{3}}{T_{2}}=\left(2.493 \times 10^{5} \mathrm{~Pa}\right)\left(\frac{300 \mathrm{~K}}{600 \mathrm{~K}}\right)=1.247 \times 10^{5} \mathrm{~Pa}
$$

Likewise at point $4, T_{4}=T_{3}=300 \mathrm{~K}$ and

$$
p_{4}=p_{3} \frac{V_{3}}{V_{4}}=\left(1.247 \times 10^{5} \mathrm{~Pa}\right)\left(\frac{4.0 \times 10^{-3} \mathrm{~m}^{3}}{2.0 \times 10^{-3} \mathrm{~m}^{3}}\right)=2.493 \times 10^{5} \mathrm{~Pa}
$$

Let us now calculate $W_{\text {net }}=W_{1 \rightarrow 2}+W_{2 \rightarrow 3}+W_{3 \rightarrow 4}+W_{4 \rightarrow 1}$. For the isothermal processes,

$$
\begin{aligned}
W_{1 \rightarrow 2} & =n R T_{1} \ln \frac{V_{2}}{V_{1}}=(0.20 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(600 \mathrm{~K}) \ln (2)=691.2 \mathrm{~J} \\
W_{3 \rightarrow 4} & =n R T_{3} \ln \frac{V_{4}}{V_{3}}=(0.20 \mathrm{~mol})(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(300 \mathrm{~K}) \ln \left(\frac{1}{2}\right)=-345.6 \mathrm{~J}
\end{aligned}
$$

For the isochoric processes, $W_{2 \rightarrow 3}=W_{4 \rightarrow 1}=0 \mathrm{~J}$. Thus, the work done per cycle is $W_{\text {net }}=345.6 \mathrm{~J} \approx 350 \mathrm{~J}$. Because $Q=W_{\mathrm{S}}+\Delta E_{\mathrm{th}}$,

$$
Q_{1 \rightarrow 2}=W_{1 \rightarrow 2}+\left(\Delta E_{\mathrm{th}}\right)_{1 \rightarrow 2}=691.2 \mathrm{~J}+0 \mathrm{~J}=691.2 \mathrm{~J}
$$

For the first isochoric process,

$$
\begin{aligned}
Q_{2 \rightarrow 3} & =n C_{\mathrm{V}} \Delta T=(0.20 \mathrm{~mol})\left(\frac{3}{2} R\right)\left(T_{3}-T_{2}\right) \\
& =(0.20 \mathrm{~mol}) \frac{3}{2}(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(300 \mathrm{~K}-600 \mathrm{~K})=-747.9 \mathrm{~K}
\end{aligned}
$$

For the second isothermal process

$$
Q_{3 \rightarrow 4}=W_{3 \rightarrow 4}+\left(\Delta E_{\mathrm{th}}\right)_{3 \rightarrow 4}=-345.6 \mathrm{~J}+0 \mathrm{~J}=-345.6 \mathrm{~J}
$$

For the second isochoric process,

$$
\begin{aligned}
Q_{4 \rightarrow 1} & =n C_{\mathrm{V}} \Delta T=n\left(\frac{3}{2} R\right)\left(T_{1}-T_{4}\right) \\
& =(0.20 \mathrm{~mol})\left(\frac{3}{2}\right)(8.31 \mathrm{~J} / \mathrm{mol} \mathrm{~K})(600 \mathrm{~K}-300 \mathrm{~K})=747.9 \mathrm{~K}
\end{aligned}
$$

Thus, $Q_{\mathrm{H}}=Q_{1 \rightarrow 2}+Q_{4 \rightarrow 1}=1439.1 \mathrm{~J}$. The thermal efficiency of the engine is

$$
\eta=\frac{W_{\text {net }}}{Q_{\mathrm{H}}}=\frac{345.6 \mathrm{~J}}{1439.1 \mathrm{~J}}=0.24=24,
$$

